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Diagonalization of Difference Operators and
System Matrices in the Method of Lines

R. Pregla, Senior Member, IEEE, and W. Pascher

Abstract— In the method of lines, the eigensolutions for the
difference operator for the electric field can be calculated from
the corresponding eigensolutions for the magnetic field. For an
arbitrary discretization of a homogeneous layer it is proved that
this is achieved by a simple matrix multiplication, which yields
numerical advantages, especially in the cases of nonequidistant
discretization or absorbing boundaries. Secondly, a transforma-
tion to principal axes of the system matrices for multilayered
planar structures is given which enables an easier transfer of
the field components from one layer interface to the other. The
result corresponds to that of the immittance approach in the
spectral-domain method.

1. INTRODUCTION

HE method of lines has been successfully applied to a va-

riety of planar microwave [1] and optical [2] waveguide
structures. One of its advantages is the easy formulation, which
is mainly achieved by suitably taking advantage of both the
planar structure of the waveguides and the properties of the
matrices encountered [1], [3].

In this letter, the diagonalization of two particular matrices
used in the method of lines is investigated. First, we prove
in a general form that the eigensolutions of the second-order
difference operator for the electric field [1], [4] can be cal-
culated from the eigensolutions of the corresponding operator
for the magnetic field. The transformed first order difference
operators are also derived from the given eigensolutions.

For the analysis of structures comprising a large number of
dielectric layers, e.g., four or more as in Fig. 1, the transfer
relation from one interface plane to another [1] is improved.
The system matrices for multilayered planar structures are
transformed to principal axes in order to ease the transfer of
the field components from one layer interface to the other. The
result corresponds to that of the immittance approach [5] in the
spectral-domain method. In a recent paper [6], this was tried in
a similar way. However, the transfer matrix approach given in
[1] is not taken into account there, but an old formulation [7]
is cited. Moreover, the formulas given in [6] are not directly
applicable to more than three layers. Our approach does not
suffer from these disadvantages and is adapted very well to
the state of the art matrix analysis in the method of lines. The
analysis is also applied to three-dimensional problems.

The following investigations are carried out on the basis of
the comprehensive book article about the method of lines [1],
especially Sections 2.3-2.4, 2.7, 3.4 and Appendixes A and B.

Manuscript received August 15, 1991.

The authors are with Allgemeine und Theoretische Elektrotechnik; FernUni-
versitdt, D-5800 Hagen, Germany.

IEEE Log Number 9105533.

h . : hy
—] ] I e e PO
: | 2
B ias s d, B
g %///:/ /2?\/%/ z'k"z G-y
E A

e

zl*** '"eZ(N+1)
't
. .

Fig. 1.

Nonequidistant discretization of a multilayered planar structure with
absorbing lateral boundaries.

II. RELATIONS BETWEEN THE DIAGONALIZED
DIFFERENCE OPERATORS

The analysis of this section is valid for. arbitrary lateral
boundary conditions, including the present implementation of
absorbing walls [4], and also for nonequidistant discretization.
We discretize the field components e, and h, as illustrated in
Fig. 1 and their first derivatives with respect to = according to

3 DB M
using coordinates normalized by the wavenumber, e.g., T =
kox. The difference operators D)., are completely general
matrices and no band or other structure is necessary. We use
shifted line systems for e, and h, as in 1, Section 2.2].

For a homogeneous layer the second order difference oper-
ators P, j, are the negative products of two different first order
operators and their eigenvalues /\e » are defined as follows:

PTy =-D.DT, = (2)
PeTe = "DhDeTe = TeAz. (3)

Assuming that A? and the eigenvector matrix T} for the
magnetic difference operator P}, are given, the electric eigen-
solutions 7' and )\z can be computed [8],[9] using

—DyD.(DyT}) = (DT 4)

1) The first case we consider is that both lateral boundaries
lie on e,-lines as in Fig. 1, which implies that the dimensions
of Py, and P, are N x N and (N+ 1) x (N +1), respectively.
We obtain

O .
X = [ ,\2] i Te =[to: DpTh - p), ®)
h N st
T

where the vector #g is a nontrivial solution of Dty = o, which
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is unique but for a scaling factor. The arbitrary diagonal matrix
By, is chosen to be A; ! for normalization.

2) In the case of equal dimensions of P, and P}, (i.e., with
the lateral boundaries on different line systems), the electric
eigensolutions are given by

A =22 T.=DyTi);! (6)

in analogy to (5).

3) If both lateral boundaries lie on h,-lines, the dimensions
of the difference operators are exchanged with each other.
Hence, (4)~(5) are valid again, if we swap the subscripts e
and h. Using p, = —A; ' we obtain

€

[0 /\3] =A7; [o:Te] = DyTiA; (7)

As can be seen from (5)—~(7), the transformation matrix T,
can be calculated from T, by a simple matrix multiplication.
This saves computing time, especially when the eigensolu-
tions must be determined numerically, as in the cases of
nonequidistant discretization or absorbing boundaries.

The transforms of the two first-order difference operators
are given by

6. =T;'D.T. ; 6, =T.'D,T, ®)

in the case of boundaries on e,-lines on both sides. Using (5)

we obtain

Ot

6h:T;1'TZ)‘h: ©)
An
and with (5) and (2),

6. =T;'D, [to thTh,\,jl}
= [T;lpeto ET;lpeDhThA,;l]

6. = — [0 : ,\h] =&, (10)
The other boundary combinations yield corresponding results.
For nonequidistant discretization as in [1, Section 2.7], we
use the normalized difference operators D and —D’ instead
of D, and Dy, respectively. For boundaries on different line
systems and with another sign convention g, = —)‘;1 we
obtain
8. =T:DT. = .. a1
This equation is identical to [1, (79)] and constitutes an ana-
lytical proof of this formula so far only proved by numerical
evidence.

III. TRANSFORMATION OF THE SYSTEM
MATRICES TO PRINCIPAL AXES

A. One-Dimensional Discretization

The aim of this section is to diagonalize ¥, Z, and V in
the transfer relation from one interface plane to another [1,
(30)], which is needed for multilayered structures (see Fig.

1). To this end the tridiagonal system matrices g, and ¥, are
diagonalized beforehand.

First, we examine a single layer in Fig. 1. Our starting point
is a hybrid formulation composed of TE, / T M, modes. The
tangential field components at the layer interfaces A and B
are related by [1, (27)~(29)]

H, Y E4
= =2+ < = 12
[HB] [yz 9.]|-Es (12)
with
_ —jH = E
H, = J22A | Ea=| Al 13
i i E T I RS
and the submatrices
z‘n=z7["h } ; ::72=z7[“h ] (14)
75 e
with
_ —eqln /Erab
= i = . 1
Y [,r—sreat /\Z—ETIJ (15)

According to [1, Sections 2.3-2.4], we use the normalized
transformed difference operators & and X~ for the first and
second derivative in z direction, respectively. We also need
the diagonal matrix for the propagation in y direction

K2 =2 (e, —epe) I (16)
——
€d
and the diagonal matrices
o = (kgsinhkzd)™' ; v = (kytanhkgd)™*  (17)

with the normalized layer thickness d = kod.

Because a and - are diagonal, the eigenvalues of the
matrices ¥, and g, can be determined from the eigenvalues
of the matrix . Combination of the eigenvalues and the
normalized eigenvectors yields

- _ [k,
=" ]

1/57‘eIh * —S
5 erede
. |:(5'reIh + xi)_%

= X'gX

Il

X
(erede+ 23] 19

The eigenvector matrix X is orthonormal, ie., X ! = X*.
We transform the field components by X

Esp= XEA,B s Hap= XI:IA,B

FANRAIE

with the diagonal system matrices

= k% v = kz— Qayp,
— gh Th . — gh
A LN B L e

Equation (19) decouples the T'E, / TM, modes into TE, /
T'M, modes (20). We have used a slightly different formula-
tion than in the immittance approach [5] in the spectral-domain

(19)

and obtain

20
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method in order to obtain real matrices only, which is more
beautiful and more convenient for practical calculations. How-
ever, a description corresponding to the immittance approach
is readily derived.

In order to transfer the tangential field components from
interface A to B, we convert (20) to

- [¢ 8] o)

according to [1, (30)] with the diagonal matrices V.Y, Z
given by V = X'VX etc,,

22)

V= :l_/
_ fyhah _ [coshkgnd
- [ a;l] - [ cosh kged (23)
- _ era—l
= —7 -l = Fh"h 24
Z Yo [ _5;10[6—1] (24)
= _ - —_1= - -1
Y=9y-919% 4. = [ h é‘rk;;fae_l } . (25)

So far we only looked at the layer with &, in Fig. 1. As X
does not depend on ¢, this transformation can also be applied
to any other homogeneous layer. Consequently we can also
transform the relation of the field components of a single layer
interface k& counted from the bottom of the structure, which
is given by [1, (41)]:

— ( ) -

H, =Y, E,4 (26)
and obtain the recurrence relation
_ (k = = = (k- k—1
¥ — (7, +VkY( NTh+ 7,7
= (k) (k—1) (k—1) 1
Y, = YOk(Y +YoRe)Yor +Y, Ry,
27
with
Yo, = diag(—kgn, ek, )
Ry, = diag(tanh kthk,tanh kge(jk). (28)

To demonstrate that the result (27) corresponds to that of
the immittance approach [5] in the spectral-domain method,
we formally replace

= (k-1) = (k)

Y, - Y Y, =Yy
] Yor — Yrare; kgedi — 7ot 29
and obtain
Y. YE coth vot
Y5y, = Yrarp e + Y5 coth s (30)

Y3e + Y7 coth ’)’21}7

which is exactly the same as equation (27) in [5]. Note
however that the TE-component is also included in (27).

B. Two-Dimensional Discretization

For two-dimensional discretization we define %, and g, by
(14) using the appropriate matrix §

22 o & &

Azh - ErAh
€2y

3
il

derived from [1, (190)], also replacing the diagonal matrix for
the propagation in y direction k; by

2 22
T

+ A, — e,

??”
>4l>

<

(32)

All matrices with circumflexes () and subscripts  or z are
constructed as i)m and bz, respectively, in [1, (177£)].

The eigenvalue matrix 4 is formally the same as in the
one-dimensional case (18), but the corresponding eigenvector
matrix runs

X = .
J' @85 Aze
j\2 i2 1
( xh+ zh) 2 .2 .2 . (33)
(Ape + )77

Here ® denotes the Kronecker product and J, a quasi-identity
of the same structure as 8, ie., 8, = J,A..

IV. CONCLUSION

The matrix analysis of the method of lines has been im-
proved. A general procedure for the computation of the
eigenvalues of the difference operators and the transformation
matrices and new formulas for diagonalized matrices for the
transfer of the field components from one interface to the other
are obtained. Both increase the mathematical clarity and save
numerical effort.
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