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Diagonalization of Difference Operators and

System Matrices in the Method of Lines
R. Pregla, Senior Member, IEEE, and W. Pascher

Abstract— In the method of lines, the eigensolutions for the
difference operator for the electric field can be calculated from
the corresponding eigensolutions for the magnetic field. For an

arbitrary discretization of a homogeneous layer it is proved that
this is achieved by a simple matrix multiplication, which yields
numerical advantages, especially in the cases of nonequidktant
discretization or absorbing boundaries. Secondly, a transforma-
tion to principal axes of the system matrices for multilayered
planar structures is given which enables an easier transfer of

the field components from one layer interface to the other. The
result corresponds to that of the immittance approach in the

spectral-domain method.

I. INTRODUCTION

T HE method of lines has been successfully applied to a va-

riety of planar microwave [1] and optical [2] waveguide

structures. One of its advantages is the easy formulation, which

is mainly achieved by suitably taking advantage of both the

planar structure of the waveguides and the properties of the

matrices encountered [1], [3].

In this letter, the diagonalization of two particular matrices

used in the method of lines is investigated. First, we prove

in a general form that the eigensolutions of the second-order

difference operator for the electric field [1], [4] can be cal-

culated from the eigensolutions of the corresponding operator

for the magnetic field. The transformed first order difference

operators are also derived from the given eigensolutions.

For the analysis of structures comprising a large number of

dielectric layers, e.g., four or more as in Fig. 1, the transfer

relation from one interface plane to another [1] is improved.

The system matrices for multilayered planar structures are

transformed to principal axes in order to ease the transfer of

the field components from one layer interface to the other. The

result corresponds to that of the immittance approach [5] in the

spectral-domain method. In a recent paper [6], this was tried in

a similar way. However, the transfer matrix approach given in

[1] is not taken into account there, but an old formulation [7]
is cited. Moreo~er, the formulas given in [6] are not directly

applicable to more than three layers. Our approach does not

suffer from these disadvantages and is adapted very well to

the state of the art matrix analysis in the method of lines. The

analysis is also applied to three-dimensional problems.

The following investigations are carried out on the basis of

the. comprehensive book article about the method of lines [1],

especially Sections 2.3–2.4, 2.7, 3.4 and Appendixes A and B.
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Fig. 1. Nonequidistant discretization of a multilayered planar structure with
absorbing lateral boundaries.

II. RELATIONS BETWEEN THE DIAGONALIZED

DIFFERENCE OPERATORS

The analysis of this section is valid for arbitrary lateral

boundary conditions, including the present implementation of

absorbing walls [4], and also for nonequidistant discretization.

We discretize the field components e. and hz as illustrated in

Fig. 1 and their first derivatives with respect to $ according to

using coordinates normalized by the wavenumber, e.g., 3 =

koz. The difference operators D.,k are completely general

matrices and no band or other structure is necessary. We use

shifted line systems for ez and h. as in [1, Section 2.2].
For a homogeneous layer the second order difference oper-

ators Pe+ are the negative products of two different first order

operators and their eigenvalues ~~,h are defined as follows:

l’hTh = –DeDhTh = Th~: (2)

PeTe = –DhDeTe = TeA~. (3]

Assuming that ~~ and the eigenvector matrix Th for the

magnetic difference operator ph are given, the electric eigen-

solutions Te and & can be computed [8], [9] using

–@@e(DhTh) = (~hTh)~;. (4)

1) The first case we consider is that both lateral boundaries

lie on e,-lines as in Fig. 1, which implies that the dimensions

of P~ and P. are ~ x ~ and (N+ 1) x (IV+ 1), respectively.

We obtain

[1
~~= o

A: ; Te = [to: @T’: . jJt], (5)

T

where the vector tois a nontrivial solution of Deto = o, which
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is unique but for a scaling factor. The arbitrary diagonal matrix

~h is chosen to be JI1 for normalization.

2) In the case of equal dimensions of Pe and ph (i.e., with

the lateral boundaries on different line systems), the electric

eigensolutions are given by

A:=A: ; T. = DhTh~~l (6)

in analogy to (5).

3) If both lateral boundaries lie on hz-lines, the dimensions

of the difference operators are exchanged with each other.

Hence, (4)-(5) are valid again, if we swap the subscripts e

and h. Using pe ‘= –Ajl we obtain

As can be seen from (5)-(7), the transformation matrix Te
can be calculated from l’h by a simple matrix multiplication.

This saves computing time, especially when the eigensolu-

tions must be determined numerically, as in the cases of

nonequidistant discretization or absorbing boundaries.

The transforms of the two first-order difference operators

are given by

6. = T~lDeTe ; bh = TjlDhT~ (8)

in the case of boundaries on ez-lines on both sides. Using (5)

we obtain

[1

o’

&=lC;l.~~h= . . . (9)

Ah

and with (5) and (2),

[
6. = T~lDe tII : DhT&,l 1.-[T~lDetO ~T~lDeDhT/&l

1

[1
be=– o:~h ‘–6;. (lo)

The other boundary combinations yield corresponding results.

For nonequidistant discretization as in [1, Section 2.7], we

use the normalized difference operators ~ and –~’ instead

of De and Dh, respectively. For boundaries on different line

systems and with another sign convention

obtain

tie = T~DTe =&.

This equation is identical to [1, (79)] and constitutes an ana-

lytical proof of this formula so far only proved by numerical

evidence.

III. TRANSFORMATION OF THB SYSTEM

MATRICES To PRINCIPAL AXES

A. One-Dimensional Discretization

The aim of this section is to diagonalize Y, 2, and V in

the transfer relation from one interface plane to another [1,

(30)], which is needed for multilayered structures (see Fig.

1). To this end the tridiagonal system matrices ?jI and ~z are

diagonalized beforehand.

First, we examine a single layer in Fig. 1. Our starting point

is a hybrid formulation composed of TEZ / TMZ, modes. The

tangential field components at the layer interfaces A and B

are related by [1, (27)–(29)] -

[21=[% Rl[-a
with

(12)

and the submatrices

with

(15)

According to [1, Sections 2.3–2.4], we use the normalized

transformed difference operators ~ and X2 for the first and

second derivative in x direction, respectively. We also need

the diagonal matrix for the propagation in y direction

and the

Ed

diagonal matrices

(16)

a = (kO sinh kgd)–l ; 7 = (kv tanhkU&’ (17)

with the normalized layer thickness ~ = kod.

Because ~ and 7 are diagonal, the eigenvalues of the

matrices al and 32 can be determined from the eigenvalues

of the matrix y. Combination of the eigenvalues and the

normalized eigenvectors yields

The eigenvector matrix X is orthonormal, i.e., X-l = X’.

We transform the field components by X

EA,B = XEA,B ; HA,B = XHA,B (19)

and obtain

(20)

with the diagonal system matrices

Equation (19) decouples the TEZ / TM= modes into TEY /

TMV modes (20). We have used a slightly different formula-

tion than in the immittance approach [5] in the spectral-domain
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method in order to obtain real matrices only, which is more

beautiful and more convenient for practical calculations. How-

ever, a description corresponding to the immittance approach

is readily derived.

In order to transfer the tangential field components from

interface A to B, we convert (20) to

[~]= [: ‘][i’ ‘A] ’22)
according IO [1, (30)] with the diagonal matrices V, Y, Z

given by V = XtVX etc.,

v =y;lyl

[

~ha;l—
1[

_ COSh kghii
—

~ecr;l – cosh kged 1
(23)

z=–j;l=–
[

k~&~l
_E–l –1~ ae 1

(24)

[

–1
Y = y2 – j&ljl =

—ah

1
–2 –1 .crkge a=

(25)

So far we only looked at the layer with Evk in Fig. 1. As X
does not depend on E., this transformation can also be applied

to any other homogeneous layer. Consequently we can also

transform the relation of the field components of a single layer

interface k counted from the bottom of the structure, which

is given by [1, (41)]:

and obtain the recurrence relation

~(k)
= (Yk+ VkY:k-’))(vk+zkY:k-l))-l

~;k) ‘= (k-1)
= Yok (Yt

= (k-1)

t + YOk~k)(YOk + Yt Rk)-l,

(26)

(27)

with

Yok = diag(–kvh) e,k#)

Rk = diag(tanh kjihd~, tanh k~edk). (28)

To demonstrate that the result (27) corresponds to that of

the immittance approach [5] in the spectral-domain method,

we formally replace

~(k-l) = (k)

t + Y3e;Yt + Y2eL

yOk + YTh12 ; kged~ ~ ~zt (29)
and obtain

which is exactly the same as equation (27) in [5]. Note

however that the TE-component is also included in (27).

B. Two-Dimensional Discretization

For two-dimensional discretization we define yl and y2 by

(14) using the appropriate matrix g

[

& – Erih –;.;z
~=

1

(31)
& at

–C$zbz i:e – ETi.

derived from [1, (190)], also replacing the diagonal matrix for

the propagation in y direction k; by

(32)

All matrices with circumflexes (“) and subscripts % or z are

constructed as fi~ and ~,, respectively, in [1, (177f)].

The eigenvalue matrix y is formally the same as in the

one-dimensional case (18), but the corresponding eigenvector

matrix runs

[

(i:h+i:h)-+
1

. (33)
(@:e + f)-+

Here @ denotes the Kronecker product and J= a quasi-identity

of the same structure as ~z, i.e., ~, = Jz~ze.

IV. CONCLUSION

The matrix analysis of the method of lines has been im-

proved. A general procedure for the computation of the

eigenvalues of the difference operators and the transformation

matrices and new formulas for diagonalized matrices for the

transfer of the field components from one interface to the other

are obtained. Both increase the mathematical clarity and save

numerical effort.
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